xiao_pet_tracker/jupyter/timeConvert.ipynb

604 lines
16 KiB
Plaintext
Raw Permalink Normal View History

2024-12-16 15:42:44 +01:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_csv(\"./daten/laufen _72364c32-b839-4ad7-9ede-951a00a25b95.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>sendTimeStamp</th>\n",
" <th>receivedTimeStamp</th>\n",
" <th>accelerationX</th>\n",
" <th>accelerationY</th>\n",
" <th>accelerationZ</th>\n",
" <th>rotationX</th>\n",
" <th>rotationY</th>\n",
" <th>rotationZ</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1731671981254</td>\n",
" <td>1731671982625</td>\n",
" <td>-563457</td>\n",
" <td>-535519</td>\n",
" <td>-337513</td>\n",
" <td>20230000</td>\n",
" <td>-6300000</td>\n",
" <td>37800000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1731671981356</td>\n",
" <td>1731671982744</td>\n",
" <td>-621773</td>\n",
" <td>-876814</td>\n",
" <td>-540582</td>\n",
" <td>2310000</td>\n",
" <td>-3920000</td>\n",
" <td>-34090000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1731671981458</td>\n",
" <td>1731671982835</td>\n",
" <td>-432002</td>\n",
" <td>-742004</td>\n",
" <td>-434259</td>\n",
" <td>-30590000</td>\n",
" <td>-9450000</td>\n",
" <td>-35770000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1731671981560</td>\n",
" <td>1731671982983</td>\n",
" <td>-665571</td>\n",
" <td>-587369</td>\n",
" <td>-542168</td>\n",
" <td>-8470000</td>\n",
" <td>-16240000</td>\n",
" <td>-21770000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>1731671981662</td>\n",
" <td>1731671983045</td>\n",
" <td>-383324</td>\n",
" <td>-675209</td>\n",
" <td>-333670</td>\n",
" <td>11130000</td>\n",
" <td>-9380000</td>\n",
" <td>-48230000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" sendTimeStamp receivedTimeStamp accelerationX accelerationY \\\n",
"0 1731671981254 1731671982625 -563457 -535519 \n",
"1 1731671981356 1731671982744 -621773 -876814 \n",
"2 1731671981458 1731671982835 -432002 -742004 \n",
"3 1731671981560 1731671982983 -665571 -587369 \n",
"4 1731671981662 1731671983045 -383324 -675209 \n",
"\n",
" accelerationZ rotationX rotationY rotationZ \n",
"0 -337513 20230000 -6300000 37800000 \n",
"1 -540582 2310000 -3920000 -34090000 \n",
"2 -434259 -30590000 -9450000 -35770000 \n",
"3 -542168 -8470000 -16240000 -21770000 \n",
"4 -333670 11130000 -9380000 -48230000 "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"test = df[\"sendTimeStamp\"].iloc[0]"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"np.int64(1731671981254)"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"test"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"import pytz\n",
"from datetime import datetime"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Timestamp('1970-01-01 00:28:51.671981254')"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.to_datetime(test)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'1970-01-01T00:28:51.671981254'"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# tz = pytz.timezone('Europe/Berlin')\n",
"pd.to_datetime(test).isoformat()\n",
"# print(datetime.fromtimestamp(test, tz).isoformat())"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1731671981254\n",
"1731671981356\n",
"1731671981458\n",
"1731671981560\n",
"1731671981662\n",
"1731671981763\n",
"1731671981865\n",
"1731671981967\n",
"1731671982069\n",
"1731671982171\n",
"1731671982273\n",
"1731671982375\n",
"1731671982476\n",
"1731671982578\n",
"1731671982680\n",
"1731671982782\n",
"1731671982884\n",
"1731671982986\n",
"1731671983087\n",
"1731671983189\n",
"1731671983291\n",
"1731671983393\n",
"1731671983495\n",
"1731671983597\n",
"1731671983698\n",
"1731671983800\n",
"1731671983902\n",
"1731671984004\n",
"1731671984106\n",
"1731671984208\n",
"1731671984310\n",
"1731671984411\n",
"1731671984513\n",
"1731671984615\n",
"1731671984717\n",
"1731671984819\n",
"1731671984921\n",
"1731671985022\n",
"1731671985124\n",
"1731671985226\n",
"1731671985328\n"
]
}
],
"source": [
"sendTimes = df['sendTimeStamp']\n",
"\n",
"for sendTime in sendTimes:\n",
" print(sendTime)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df['sendTimeStamp'] = df['sendTimeStamp'].to_timestamp()"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [],
"source": [
"timestamps = pd.to_datetime(df['sendTimeStamp'], unit='ms')"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [],
"source": [
"df['timestamp'] = timestamps"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>sendTimeStamp</th>\n",
" <th>receivedTimeStamp</th>\n",
" <th>accelerationX</th>\n",
" <th>accelerationY</th>\n",
" <th>accelerationZ</th>\n",
" <th>rotationX</th>\n",
" <th>rotationY</th>\n",
" <th>rotationZ</th>\n",
" <th>timestamp</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1731671981254</td>\n",
" <td>1731671982625</td>\n",
" <td>-563457</td>\n",
" <td>-535519</td>\n",
" <td>-337513</td>\n",
" <td>20230000</td>\n",
" <td>-6300000</td>\n",
" <td>37800000</td>\n",
" <td>2024-11-15 11:59:41.254</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1731671981356</td>\n",
" <td>1731671982744</td>\n",
" <td>-621773</td>\n",
" <td>-876814</td>\n",
" <td>-540582</td>\n",
" <td>2310000</td>\n",
" <td>-3920000</td>\n",
" <td>-34090000</td>\n",
" <td>2024-11-15 11:59:41.356</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1731671981458</td>\n",
" <td>1731671982835</td>\n",
" <td>-432002</td>\n",
" <td>-742004</td>\n",
" <td>-434259</td>\n",
" <td>-30590000</td>\n",
" <td>-9450000</td>\n",
" <td>-35770000</td>\n",
" <td>2024-11-15 11:59:41.458</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1731671981560</td>\n",
" <td>1731671982983</td>\n",
" <td>-665571</td>\n",
" <td>-587369</td>\n",
" <td>-542168</td>\n",
" <td>-8470000</td>\n",
" <td>-16240000</td>\n",
" <td>-21770000</td>\n",
" <td>2024-11-15 11:59:41.560</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>1731671981662</td>\n",
" <td>1731671983045</td>\n",
" <td>-383324</td>\n",
" <td>-675209</td>\n",
" <td>-333670</td>\n",
" <td>11130000</td>\n",
" <td>-9380000</td>\n",
" <td>-48230000</td>\n",
" <td>2024-11-15 11:59:41.662</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" sendTimeStamp receivedTimeStamp accelerationX accelerationY \\\n",
"0 1731671981254 1731671982625 -563457 -535519 \n",
"1 1731671981356 1731671982744 -621773 -876814 \n",
"2 1731671981458 1731671982835 -432002 -742004 \n",
"3 1731671981560 1731671982983 -665571 -587369 \n",
"4 1731671981662 1731671983045 -383324 -675209 \n",
"\n",
" accelerationZ rotationX rotationY rotationZ timestamp \n",
"0 -337513 20230000 -6300000 37800000 2024-11-15 11:59:41.254 \n",
"1 -540582 2310000 -3920000 -34090000 2024-11-15 11:59:41.356 \n",
"2 -434259 -30590000 -9450000 -35770000 2024-11-15 11:59:41.458 \n",
"3 -542168 -8470000 -16240000 -21770000 2024-11-15 11:59:41.560 \n",
"4 -333670 11130000 -9380000 -48230000 2024-11-15 11:59:41.662 "
]
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [],
"source": [
"df.to_csv(\"laufen.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 1970-01-01 00:28:51.671981254\n",
"1 1970-01-01 00:28:51.671981356\n",
"2 1970-01-01 00:28:51.671981458\n",
"3 1970-01-01 00:28:51.671981560\n",
"4 1970-01-01 00:28:51.671981662\n",
"5 1970-01-01 00:28:51.671981763\n",
"6 1970-01-01 00:28:51.671981865\n",
"7 1970-01-01 00:28:51.671981967\n",
"8 1970-01-01 00:28:51.671982069\n",
"9 1970-01-01 00:28:51.671982171\n",
"10 1970-01-01 00:28:51.671982273\n",
"11 1970-01-01 00:28:51.671982375\n",
"12 1970-01-01 00:28:51.671982476\n",
"13 1970-01-01 00:28:51.671982578\n",
"14 1970-01-01 00:28:51.671982680\n",
"15 1970-01-01 00:28:51.671982782\n",
"16 1970-01-01 00:28:51.671982884\n",
"17 1970-01-01 00:28:51.671982986\n",
"18 1970-01-01 00:28:51.671983087\n",
"19 1970-01-01 00:28:51.671983189\n",
"20 1970-01-01 00:28:51.671983291\n",
"21 1970-01-01 00:28:51.671983393\n",
"22 1970-01-01 00:28:51.671983495\n",
"23 1970-01-01 00:28:51.671983597\n",
"24 1970-01-01 00:28:51.671983698\n",
"25 1970-01-01 00:28:51.671983800\n",
"26 1970-01-01 00:28:51.671983902\n",
"27 1970-01-01 00:28:51.671984004\n",
"28 1970-01-01 00:28:51.671984106\n",
"29 1970-01-01 00:28:51.671984208\n",
"30 1970-01-01 00:28:51.671984310\n",
"31 1970-01-01 00:28:51.671984411\n",
"32 1970-01-01 00:28:51.671984513\n",
"33 1970-01-01 00:28:51.671984615\n",
"34 1970-01-01 00:28:51.671984717\n",
"35 1970-01-01 00:28:51.671984819\n",
"36 1970-01-01 00:28:51.671984921\n",
"37 1970-01-01 00:28:51.671985022\n",
"38 1970-01-01 00:28:51.671985124\n",
"39 1970-01-01 00:28:51.671985226\n",
"40 1970-01-01 00:28:51.671985328\n",
"Name: sendTimeStamp, dtype: datetime64[ns]"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.to_datetime(df['sendTimeStamp'])"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"np.int64(1731671981254)"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"test"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2024-11-15T11:59:41.254000+00:00\n"
]
}
],
"source": [
"import datetime\n",
"\n",
"# Konvertierung in Sekunden\n",
"timestamp_s = test / 1000.0\n",
"\n",
"# Konvertierung in ein datetime-Objekt\n",
"date_time = datetime.datetime.fromtimestamp(timestamp_s, tz=datetime.timezone.utc)\n",
"\n",
"# Ausgabe im ISO 8601-Format\n",
"iso_format = date_time.isoformat()\n",
"print(iso_format)"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'2024-11-15T11:59:41.254000'"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.to_datetime(test, unit='ms').isoformat()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "dataMining",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}